skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muehle, Matthias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this study, we demonstrate a novel approach for synthesizing free‐standing and transferable polycrystalline diamond membranes (PCDm) to overcome these constraints, thus enabling a much wider spectrum of applications. Two types of PCDm cantilevers —Top‐Surface‐Up (TSU) and Bottom‐Surface‐Up (BSU) are fabricated, each with two different sets of dimensions: 150 µm (width) × 1200 µm (length) and 300 µm (width) × 2000 µm (length). Their mechanical and electrical properties are systematically investigated. Atomic Force Microscopy (AFM) analysis revealed that TSU‐PCDm has a higher elastic modulus than BSU‐PCDm, attributed to differences in grain size and defect distribution. Despite these differences, all PCDms in our work exhibit consistently high modulus values with minimal mechanical degradation across various cantilever geometries. Bandgap measurements using X‐ray Photoelectron Spectroscopy (XPS) and UV–vis absorption spectroscopy indicated a lower bandgap for TSU‐PCDm due to boron incorporation, while BSU‐PCDm exhibited a higher bandgap due to increased hydrogen content. Electrical characterization showed that the sheet resistance of TSU‐PCDm decreases under strain, whereas BSU‐PCDm maintains stable resistance. These findings unveil the material properties of PCDm and their potential usage for myriad diamond‐based electronic applications. 
    more » « less
  2. In this study, we demonstrate a tolerant and durable Cr/Ni bilayer metal etch mask that allows us to realize approximately 150:1 etch selectivity to diamond. This result is achieved through the use of a very thin initial Cr layer of <10 nm thickness as part of the bilayer metal mask, which results in five to ten times improved selectivity than thick single metal layer masks or bilayer masks with thicker combinations. A finite element analysis was employed to design and understand the physics and working mechanism of the bilayer metal masks with different thicknesses. Raman spectroscopy and energy-dispersive x-ray spectroscopy on the diamond surface were also performed to investigate the changes in diamond quality before and after the deep diamond etching and found that no noticeable etch damage or defects were formed. Overall, this mask strategy offers a viable way to realize deep diamond etching using a high heat and chemistry tolerant and durable bilayer metal etching mask. It also offers several technological benefits and advantages, including various deposition method options, such as sputtering and physical vapor deposition, that can be used and the total thinness of the bilayer metal mask required given the higher selectivity allows us to realize fine diamond etching or high-aspect ratio etching, which is a critical fabrication process for future power, RF, MEMS, and quantum device applications. 
    more » « less